Robert Reed Robert Reed
About me
1Z0-1127-25試験問題 & 1Z0-1127-25試験関連情報
P.S.GoShikenがGoogle Driveで共有している無料の2025 Oracle 1Z0-1127-25ダンプ:https://drive.google.com/open?id=1UgS1_jVLxJrlFV92p-4yG0IDas5RwYYl
試験準備のための学習資料を見つけている場合、当社の資料は検索を終了します。私たちの1Z0-1127-25試験トレントは、あなたが期待できない高品質を持っています。 1Z0-1127-25試験トレントは時間を大幅に節約するのに役立ち、あなたがやりたいことをする自由時間が増えると思います。私たちの1Z0-1127-25テスト問題集の使用について後悔がないことを保証できます。アクションの時間が来たら、思考を止めて、入って、私たちの1Z0-1127-25試験トレントを試してください。1Z0-1127-25試験に合格し、短時間で証明書を取得する必要があります。
Oracle 1Z0-1127-25 認定試験の出題範囲:
| トピック | 出題範囲 |
|---|---|
| トピック 1 |
|
| トピック 2 |
|
| トピック 3 |
|
| トピック 4 |
|
1Z0-1127-25試験関連情報 & 1Z0-1127-25日本語版問題集
GoShiken1年以内に1Z0-1127-25試験問題の更新を無料で提供し、購入者が1年後にサービス保証を延長したい場合は50%の割引特典を提供します。古いクライアントは、他の試験教材を購入する際に、ある程度の割引を受けています。 1Z0-1127-25ガイドトレントを頻繁に更新し、理論と実践の最新動向を反映した最新の学習資料を提供します。したがって、1Z0-1127-25テストガイドを十分にマスターし、試験に合格することができます。メリットを享受しながら、試験に合格することができます。お気軽に1Z0-1127-25ガイド急流を購入してください!
Oracle Cloud Infrastructure 2025 Generative AI Professional 認定 1Z0-1127-25 試験問題 (Q18-Q23):
質問 # 18
How can the concept of "Groundedness" differ from "Answer Relevance" in the context of Retrieval Augmented Generation (RAG)?
- A. Groundedness refers to contextual alignment, whereas Answer Relevance deals with syntactic accuracy.
- B. Groundedness measures relevance to the user query, whereas Answer Relevance evaluates data integrity.
- C. Groundedness focuses on data integrity, whereas Answer Relevance emphasizes lexical diversity.
- D. Groundedness pertains to factual correctness, whereas Answer Relevance concerns query relevance.
正解:D
解説:
Comprehensive and Detailed In-Depth Explanation=
In RAG, "Groundedness" assesses whether the response is factually correct and supported by retrieved data, while "Answer Relevance" evaluates how well the response addresses the user's query. Option A captures this distinction accurately. Option B is off-groundedness isn't just contextual alignment, and relevance isn't about syntax. Option C swaps the definitions. Option D misaligns-groundedness isn't solely data integrity, and relevance isn't lexical diversity. This distinction ensures RAG outputs are both true and pertinent.
OCI 2025 Generative AI documentation likely defines these under RAG evaluation metrics.
質問 # 19
Which is a key characteristic of the annotation process used in T-Few fine-tuning?
- A. T-Few fine-tuning requires manual annotation of input-output pairs.
- B. T-Few fine-tuning involves updating the weights of all layers in the model.
- C. T-Few fine-tuning relies on unsupervised learning techniques for annotation.
- D. T-Few fine-tuning uses annotated data to adjust a fraction of model weights.
正解:D
解説:
Comprehensive and Detailed In-Depth Explanation=
T-Few, a Parameter-Efficient Fine-Tuning (PEFT) method, uses annotated (labeled) data to selectively update a small fraction of model weights, optimizing efficiency-Option A is correct. Option B is false-manual annotation isn't required; the data just needs labels. Option C (all layers) describes Vanilla fine-tuning, not T-Few. Option D (unsupervised) is incorrect-T-Few typically uses supervised, annotated data. Annotation supports targeted updates.
OCI 2025 Generative AI documentation likely details T-Few's data requirements under fine-tuning processes.
質問 # 20
What is the main advantage of using few-shot model prompting to customize a Large Language Model (LLM)?
- A. It significantly reduces the latency for each model request.
- B. It allows the LLM to access a larger dataset.
- C. It provides examples in the prompt to guide the LLM to better performance with no training cost.
- D. It eliminates the need for any training or computational resources.
正解:C
解説:
Comprehensive and Detailed In-Depth Explanation=
Few-shot prompting involves providing a few examples in the prompt to guide the LLM's behavior, leveraging its in-context learning ability without requiring retraining or additional computational resources. This makes Option C correct. Option A is false, as few-shot prompting doesn't expand the dataset. Option B overstates the case, as inference still requires resources. Option D is incorrect, as latency isn't significantly affected by few-shot prompting.
OCI 2025 Generative AI documentation likely highlights few-shot prompting in sections on efficient customization.
質問 # 21
Which is a cost-related benefit of using vector databases with Large Language Models (LLMs)?
- A. They increase the cost due to the need for real-time updates.
- B. They are more expensive but provide higher quality data.
- C. They require frequent manual updates, which increase operational costs.
- D. They offer real-time updated knowledge bases and are cheaper than fine-tuned LLMs.
正解:D
解説:
Comprehensive and Detailed In-Depth Explanation=
Vector databases enable real-time knowledge retrieval for LLMs (e.g., in RAG), avoiding the high computational and data costs of fine-tuning an LLM for every update. They store embeddings efficiently, making them a cost-effective alternative to retraining, thus Option B is correct. Option A is false-updates are automated, not manual. Option C misrepresents-real-time capability reduces, not increases, costs compared to fine-tuning. Option D is incorrect-vector databases aren't inherently more expensive; they optimize cost and performance. This makes them economical for dynamic applications.
OCI 2025 Generative AI documentation likely highlights vector database cost benefits under RAG or data management sections.
質問 # 22
How does a presence penalty function in language model generation?
- A. It penalizes a token each time it appears after the first occurrence.
- B. It penalizes only tokens that have never appeared in the text before.
- C. It penalizes all tokens equally, regardless of how often they have appeared.
- D. It applies a penalty only if the token has appeared more than twice.
正解:A
解説:
Comprehensive and Detailed In-Depth Explanation=
A presence penalty reduces the probability of tokens that have already appeared in the output, applying the penalty each time they reoccur after their first use, to discourage repetition. This makes Option D correct. Option A (equal penalties) ignores prior appearance. Option B is the opposite-penalizing unused tokens isn't the intent. Option C (more than twice) adds an arbitrary threshold not typically used. Presence penalty enhances output variety.OCI 2025 Generative AI documentation likely details presence penalty under generation control parameters.
質問 # 23
......
なにごとによらず初手は难しいです、どのようにOracle 1Z0-1127-25試験への復習を始めて悩んでいますか。我々のOracle 1Z0-1127-25問題集を購買するのはあなたの試験に準備する第一歩です。我々の提供するOracle 1Z0-1127-25問題集はあなたの需要に満足できるだけでなく、試験に合格する必要があることです。あなたはまだ躊躇しているなら、GoShikenの1Z0-1127-25問題集デモを参考しましょ。
1Z0-1127-25試験関連情報: https://www.goshiken.com/Oracle/1Z0-1127-25-mondaishu.html
- 1Z0-1127-25試験問題を選択して - Oracle Cloud Infrastructure 2025 Generative AI Professionalを心配してありません 🐷 “ www.japancert.com ”に移動し、➡ 1Z0-1127-25 ️⬅️を検索して無料でダウンロードしてください1Z0-1127-25問題サンプル
- 1Z0-1127-25資格専門知識 🩺 1Z0-1127-25模擬試験 🌟 1Z0-1127-25復習解答例 🖱 ▶ www.goshiken.com ◀にて限定無料の【 1Z0-1127-25 】問題集をダウンロードせよ1Z0-1127-25赤本勉強
- 試験の準備方法-有難い1Z0-1127-25試験問題試験-素敵な1Z0-1127-25試験関連情報 🎌 ▶ www.pass4test.jp ◀を入力して➥ 1Z0-1127-25 🡄を検索し、無料でダウンロードしてください1Z0-1127-25問題無料
- 完璧-ハイパスレートの1Z0-1127-25試験問題試験-試験の準備方法1Z0-1127-25試験関連情報 🆗 ▶ www.goshiken.com ◀から【 1Z0-1127-25 】を検索して、試験資料を無料でダウンロードしてください1Z0-1127-25赤本勉強
- 完璧-ハイパスレートの1Z0-1127-25試験問題試験-試験の準備方法1Z0-1127-25試験関連情報 🥓 ➽ www.japancert.com 🢪から☀ 1Z0-1127-25 ️☀️を検索して、試験資料を無料でダウンロードしてください1Z0-1127-25日本語参考
- 素晴らしい1Z0-1127-25試験問題 - 合格スムーズ1Z0-1127-25試験関連情報 | 正確的な1Z0-1127-25日本語版問題集 👐 { 1Z0-1127-25 }の試験問題は⏩ www.goshiken.com ⏪で無料配信中1Z0-1127-25ブロンズ教材
- 1Z0-1127-25問題サンプル 🎱 1Z0-1127-25問題無料 🤸 1Z0-1127-25受験準備 🎒 ➠ www.passtest.jp 🠰サイトにて最新✔ 1Z0-1127-25 ️✔️問題集をダウンロード1Z0-1127-25ブロンズ教材
- 1Z0-1127-25模擬試験 🦨 1Z0-1127-25試験問題解説集 🦕 1Z0-1127-25日本語版対策ガイド 🚊 “ www.goshiken.com ”から➤ 1Z0-1127-25 ⮘を検索して、試験資料を無料でダウンロードしてください1Z0-1127-25独学書籍
- ハイパスレートの1Z0-1127-25試験問題 - 合格スムーズ1Z0-1127-25試験関連情報 | 実際的な1Z0-1127-25日本語版問題集 🦺 Open Webサイト⏩ www.jpshiken.com ⏪検索➡ 1Z0-1127-25 ️⬅️無料ダウンロード1Z0-1127-25日本語参考
- 1Z0-1127-25ブロンズ教材 🩲 1Z0-1127-25模擬対策 📻 1Z0-1127-25赤本勉強 🌊 【 www.goshiken.com 】を開いて✔ 1Z0-1127-25 ️✔️を検索し、試験資料を無料でダウンロードしてください1Z0-1127-25日本語参考
- 1Z0-1127-25合格対策 ⭐ 1Z0-1127-25ブロンズ教材 ✍ 1Z0-1127-25認定資格試験 🛵 ▛ www.jpexam.com ▟で➠ 1Z0-1127-25 🠰を検索し、無料でダウンロードしてください1Z0-1127-25日本語試験情報
- www.stes.tyc.edu.tw, myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, www.stes.tyc.edu.tw, profstudyhub.com, theapra.org, www.sxxredu.cn, y.hackp.net, www.xiaomibbs.com, shortcourses.russellcollege.edu.au, ncon.edu.sa, Disposable vapes
2025年GoShikenの最新1Z0-1127-25 PDFダンプおよび1Z0-1127-25試験エンジンの無料共有:https://drive.google.com/open?id=1UgS1_jVLxJrlFV92p-4yG0IDas5RwYYl
0
Course Enrolled
0
Course Completed