Chris Smith Chris Smith
About me
DEA-C02์ธ์ฆ๋คํ๊ณต๋ถ, DEA-C02๋คํ์ต์ ๋ฌธ์
๋ง์ฝDumpTOP์ ํ์ฌ๋ถ์ ๋ํ์ฌ ๋ง์ค์ด๊ฒ ๋๋ค๋ฉด ์ฌ๋ฌ๋ถ์ ์ฐ์ ์ฐ๋ฆฌ DumpTOP ์ฌ์ดํธ์์ ์ ๊ณตํ๋Snowflake DEA-C02์ํ์ ๋ณด ๊ด๋ จ์๋ฃ์ ์ผ๋ถ๋ถ ๋ฌธ์ ์ ๋ต ๋ฑ ์ํ์ ๋ฌด๋ฃ๋ก ๋ค์ด๋ฐ์ ์ฒดํํด๋ณผ ์ ์์ต๋๋ค. ์ฒดํ ํDumpTOP ์์ ์ถ์ํSnowflake DEA-C02๋คํ์ ์ ๋ขฐ๊ฐ์ ๋๋ผ๊ฒ ๋ ๊ฒ์ ๋๋ค. DumpTOP๋ ์ฌ๋ฌ๋ถ์ด ์์ ํ๊ฒSnowflake DEA-C02์ํ์ ํจ์คํ ์ ์๋ ์ต๊ณ ์ ์ ํ์ ๋๋ค. DumpTOP์ ์ ํํจ์ผ๋ก์จ ์ฌ๋ฌ๋ถ์ ์ฑ๊ณต๋ ์ ํํ๊ฒ์ด๋ผ๊ณ ๋ณผ์ ์์ต๋๋ค.
DumpTOP์์๋ ์์ฅ์์ ๊ฐ์ฅ ์ต์ ๋ฒ์ ์ด์ ์ ์ค์จ์ด ๊ฐ์ฅ ๋์ Snowflake์ธ์ฆ DEA-C02๋คํ๋ฅผ ์ ๊ณตํด๋๋ฆฝ๋๋ค. Snowflake์ธ์ฆ DEA-C02๋คํ๋ IT์ ์ข ์ ๋ช์ญ๋ ๊ฐ ์ข ์ฌํ IT์ ๋ฌธ๊ฐ๊ฐ ์ค์ ์ํ๋ฌธ์ ๋ฅผ ์ฐ๊ตฌํ์ฌ ์ ์ํ ๊ณ ํ์ง ๊ณต๋ถ์๋ฃ๋ก์ ์ํํจ์ค์จ์ด ์ฅ๋ ์๋๋๋ค. ๋คํ๋ฅผ ๊ตฌ๋งคํ์ฌ ์ํ์์ ๋ถํฉ๊ฒฉ์ฑ์ ํ๋ฅผ ๋ฐ์ผ์๋ฉด ๋คํ๋น์ฉ ์ ์ก์ ํ๋ถํด๋๋ฆฝ๋๋ค.
>> DEA-C02์ธ์ฆ๋คํ๊ณต๋ถ <<
DEA-C02๋คํ์ต์ ๋ฌธ์ - DEA-C02์์๋ฌธ์
IT์ ๋ฌธ๊ฐ๋ค์ด ์์ ๋ง์ ๊ฒฝํ๊ณผ ๋์์๋ ๋ ธ๋ ฅ์ผ๋ก ์์ฑํ Snowflake DEA-C02๋คํ์ ๊ด์ฌ์ด ์๋๋ฐ ์ ๋ป ๊ตฌ๋งค๊ฒฐ์ ์ ๋ด๋ฆด์์๋ ๋ถ์Snowflake DEA-C02๋คํ ๊ตฌ๋งค ์ฌ์ดํธ์์ ๋ฉ์ผ์ฃผ์๋ฅผ ์ ๋ ฅํํ DEMO๋ฅผ ๋ค์ด๋ฐ์ ๋ฌธ์ ๋ฅผ ํ์ด๋ณด๊ณ ๊ตฌ๋งคํ ์ ์์ต๋๋ค. ์๊ฒฉ์ฆ์ ๋ง์ด ์ทจ๋ํ๋ฉด ์ข์ ์ทจ์ ๋ฌธ๋ ๋์ด์ง๋๋ค. Snowflake DEA-C02 ๋คํ๋กSnowflake DEA-C02์ํ์ ํจ์คํ์ฌ ์๊ฒฉ์ฆ์ ์ฝ๊ฒ ์ทจ๋ํด๋ณด์ง ์์ผ์ค๋์?
์ต์ SnowPro Advanced DEA-C02 ๋ฌด๋ฃ์ํ๋ฌธ์ (Q81-Q86):
์ง๋ฌธ # 81
You are designing a data pipeline in Snowflake that involves several tasks chained together. One of the tasks, 'task B' , depends on the successful completion of 'task A'. 'task_B' occasionally fails due to transient network issues. To ensure the pipeline's robustness, you need to implement a retry mechanism for 'task_B' without using external orchestration tools. What is the MOST efficient way to achieve this using native Snowflake features, while also limiting the number of retries to prevent infinite loops and excessive resource consumption? Assume the task definition for 'task_B' is as follows:
- A. Utilize Snowflake's external functions to call a retry service implemented in a cloud function (e.g., AWS Lambda or Azure Function). The external function will handle the retry logic and update the task status in Snowflake.
- B. Leverage Snowflake's event tables like QUERY_HISTORY and TASK _ HISTORY in the ACCOUNT_USAGE schema joined with custom metadata tags to correlate specific transformation steps to execution times and resource usage. Also set up alerting based on defined performance thresholds.
- C. Modify the task definition of 'task_B' to include a SQL statement that checks for the success of 'task_R in the TASK_HISTORY view before executing the main logic. If 'task_A' failed, use ' SYSTEM$WAIT to introduce a delay and then retry the main logic. Implement a counter to limit the number of retries.
- D. Create a separate task, 'task_C', that is scheduled to run immediately after 'task will check the status of 'task_BS in the TASK HISTORY view. If 'task_B' failed, 'task_c' will re-enable 'task_B' and suspend itself. Use the parameter on 'task_B' to limit the number of retries.
- E. Embed the retry logic directly within the stored procedure called by 'task_B'. The stored procedure should catch exceptions related to network issues, introduce a delay using 'SYSTEM$WAIT , and retry the main logic. Implement a loop with a maximum retry count.
์ ๋ต๏ผE
์ค๋ช
๏ผ
Option C is the most efficient and self-contained approach using native Snowflake features. Embedding the retry logic within the stored procedure called by 'task_ff allows for fine-grained control over the retry process, exception handling, and delay implementation. The retry count limit prevents infinite loops. Option A, while technically feasible, involves querying the TASK HISTORY view, which can be less efficient. Option B requires creating and managing an additional task. Option D introduces external dependencies, making the solution more complex. Option E does not address the retry mechanism.
ย
์ง๋ฌธ # 82
You have an external table in Snowflake pointing to data in Azure Blob Storage. The data consists of customer transactions, and new files are added to the Blob Storage daily You want to ensure that Snowflake automatically picks up these new files and reflects them in the external table without manual intervention. However, you are observing delays in Snowflake detecting the new files. What are the potential reasons for this delay and how can you troubleshoot them? (Choose two)
- A. Snowflake's internal cache is not properly configured; increasing the cache size will solve the problem.
- B. The external table's 'AUTO_REFRESH' parameter is set to 'FALSE', which disables automatic metadata refresh.
- C. The file format used for the external table is incompatible with the data files in Blob Storage.
- D. The storage integration associated with the external table does not have sufficient permissions to access the Blob Storage.
- E. The Azure Event Grid notification integration is not properly configured to notify Snowflake about new file arrivals in the Blob Storage.
์ ๋ต๏ผB,E
์ค๋ช
๏ผ
The two primary reasons for delays in Snowflake detecting new files in an external table are: 1) Incorrect configuration of the cloud provider's notification service (Azure Event Grid in this case). Snowflake relies on these notifications to be informed about new file arrivals. If the integration isn't set up correctly, Snowflake won't know when to refresh the metadata. 2) The parameter must be set to ' TRUE' for automatic metadata refresh to occur. If it's set to FALSE , manual refreshes are required using 'ALTER EXTERNAL TABLE ... REFRESH". Options D and E, although possible issues, won't directly cause a delay in detecting new files, but rather cause issues accessing files after detection. Option C is irrelevant as Snowflake's caching mechanism does not directly impact external table metadata refresh.
ย
์ง๋ฌธ # 83
You are tasked with designing a solution to load semi-structured data (JSON) from an AWS S3 bucket into a Snowflake table using Snowpipe and the REST API. The data in S3 is constantly being updated, and you need to ensure that only new or modified files are loaded into Snowflake. Which of the following steps are essential for implementing an efficient and cost-effective solution?
- A. Configure auto-ingest using SQS queue and SNOWPIPE object. No need to manually call the REST API endpoint for data loading.
- B. Use the 'VALIDATION MODES copy option with 'RETURN_ALL RESULTS = TRUE to validate all data being loaded into the Snowflake table.
- C. Create a Snowflake external function that polls the S3 bucket every minute, checks for new files using the LIST command, and then calls the Snowpipe REST API endpoint for each new file.
- D. Configure an S3 event notification to trigger a REST API call to the Snowpipe endpoint whenever a new or modified file is added to the S3 bucket. The API call should include the file name in the request.
- E. Configure Snowpipe to automatically detect new files in the S3 bucket using event notifications, but manually refresh the pipe using SYSTEM $PIPE STATUS periodically to ensure that all files are processed.
์ ๋ต๏ผA,D
์ค๋ช
๏ผ
Options A and E are the most efficient and cost-effective solutions. Option A utilizes S3 event notifications to trigger Snowpipe, loading only new files using REST API, and avoids unnecessary polling. Option E uses Snowflake's Auto Ingest feature. Auto ingest eliminates the need for manual Snowpipe calls through REST API and reduces latency. Option B involves inefficient polling. Option C involves unnecessary manual refreshing of the pipe. Option D focuses on data validation during the copy process but doesn't address the core requirement of efficient file detection and triggering.
ย
์ง๋ฌธ # 84
You have a large dataset of JSON documents stored in AWS S3, each document representing a customer order. You want to ingest these documents into Snowflake using Snowpipe and transform the nested 'address' field into separate columns in your target table. Considering data volume, complexity, and cost efficiency, which approach is MOST suitable?
- A. Use Snowpipe to ingest the raw JSON data into a VARIANT column, then create a view that flattens the 'address' field.
- B. Pre-process the JSON documents using an external compute service (e.g., AWS Lambda) to flatten the 'address' field before ingesting into Snowflake via Snowpipe.
- C. Use Snowpipe with a user-defined function (UDF) written in Python to parse the JSON and flatten the 'address' field.
- D. Create an external table on the S3 bucket and then use CREATE TABLE AS SELECT (CTAS) to transform the data.
- E. Use a COPY INTO statement with a transform clause to flatten the 'address' field during ingestion.
์ ๋ต๏ผA
์ค๋ช
๏ผ
Using Snowpipe to ingest into a VARIANT column and then creating a view is generally the most cost-effective and flexible approach for handling semi- structured data and performing transformations in Snowflake. CTAS involves full table scans and is less efficient for ongoing ingestion. COPY INTO with transforms has limitations for complex nested structures. Pre-processing with Lambda adds complexity and cost. UDFs can be expensive for large datasets compared to Snowflake's native JSON processing capabilities.
ย
์ง๋ฌธ # 85
You are developing a data transformation pipeline in Snowpark Python to aggregate website traffic data'. The raw data is stored in a Snowflake table named 'website_events' , which includes columns like 'event_timestamp' , 'user_id', 'page_urr , and 'event_type'. Your goal is to calculate the number of unique users visiting each page daily and store the aggregated results in a new table named Considering performance and resource efficiency, select all the statements that are correct:
- A. Applying a filter early in the pipeline to remove irrelevant 'event_type' values can significantly reduce the amount of data processed in subsequent aggregation steps.
- B. Defining the schema for the table before writing the aggregated results is crucial for ensuring data type consistency and optimal storage.
- C. Using is the most efficient method for writing the aggregated results to Snowflake, regardless of data size.
- D. Using followed by is an efficient approach to calculate unique users per page per day.
- E. Caching the 'website_eventS DataFrame using 'cache()' before performing the aggregation is always beneficial, especially if the data volume is large.
์ ๋ต๏ผA,B,D
์ค๋ช
๏ผ
Option A is correct: Grouping by page URL and the date part of the timestamp, followed by a distinct count of user IDs, accurately calculates unique users per page per day. Option C is correct: Defining the schema ensures data types are correctly mapped and enforced, preventing potential issues during data loading and improving storage efficiency. Option E is correct: Filtering early reduces the data volume for subsequent operations, improving performance.
ย
์ง๋ฌธ # 86
......
Snowflake์ธ์ฆ DEA-C02์ํ์ ์ธ๊ธฐ์๋ IT์๊ฒฉ์ฆ์ ์ทจ๋ํ๋๋ฐ ํ์ํ ๊ตญ์ ์ ์ผ๋ก ์ธ์ ๋ฐ๋ ์ํ๊ณผ๋ชฉ์ ๋๋ค. Snowflake์ธ์ฆ DEA-C02์ํ์ ํจ์คํ๋ ค๋ฉด DumpTOP์Snowflake์ธ์ฆ DEA-C02๋คํ๋ก ์ํ์ค๋น๊ณต๋ถ๋ฅผ ํ๋๊ฒ ์ ์ผ ์ข์ ๋ฐฉ๋ฒ์ ๋๋ค. DumpTOP๋คํ๋ IT์ ๋ฌธ๊ฐ๋ค์ด ์ต์ ์ ๋คํด ์ฐ๊ตฌํด๋ธ ๋ฉ์ง ์ํ์ ๋๋ค. Snowflake์ธ์ฆ DEA-C02๋คํ๊ตฌ๋งคํ ์ ๋ฐ์ดํธ๋ ์ ์ ๋ฐ์ดํธ๋ฒ์ ์ ๋ฌด๋ฃ์๋น์ค๋ฃ ์ ๊ณตํด๋๋ฆฝ๋๋ค.
DEA-C02๋คํ์ต์ ๋ฌธ์ : https://www.dumptop.com/Snowflake/DEA-C02-dump.html
DEA-C02์ํ์ ์ํ์ฌ ๋ ธ๋ ฅํ๊ณ ๊ณ์ญ๋๊น, Snowflake DEA-C02 ์ํ์ ๋ด์ผ ํ๋ ๋ถ์ด๋ผ๋ฉดDumpTOP๋ฅผ ํ๋ฒ ๋ฏฟ์ด๋ณด์ธ์, DEA-C02 ์์๋๋น์๋ฃ๋ฅผ ๊ตฌ๋งคํ์๋ฉด 1๋ ๊ฐ ์ ๋ฐ์ดํธ๋ ๋๋ง๋ค ์ต์ ๋ฒ์ ์ ๊ตฌ๋งค์ ์ฌ์ฉํ ๋ฉ์ผ๋ก ์ ์กํด๋๋ฆฝ๋๋ค, DEA-C02 ์ํ Braindump๋ฅผ ์ฌ์ฉํ์ฌ, ๋ค๋ฅธ ์ด๋ ํ ๊ฒ๋, ๋น์ผ ๊ต์ก๋ ๋ฐ์ ํ์๊ฐ ์์ต๋๋ค, Snowflake DEA-C02 ๋คํ๋ Snowflake DEA-C02 ์ํ์ ๋ชจ๋ ๋ฌธ์ ๋ฅผ ์ปค๋ฒํ๊ณ ์์ด ์ํ์ ์ค์จ์ด ์์ฃผ ๋์ต๋๋ค, DumpTOP ์ Snowflake์ธ์ฆ DEA-C02๋คํ๋ก ์ํ์ค๋น๊ณต๋ถ๋ฅผ ํ์๋ฉด ํ๋ฐฉ์ ์ํํจ์ค ๊ฐ๋ฅํฉ๋๋ค, IT์ ๊ณ์ ์ข ์ฌํ์๋ ๋ถ๊ป ์์ด์ Snowflake DEA-C02์ํ์ ์์ฃผ ์ค์ํ ์ํ์ ๋๋ค.
์์ ํ ๋ง์กฑํ๋์ง ๋ชธ๊น์ง ๋ถ๋ฅด๋ฅด ๋จ์ด์ฃผ์ ๋ค, ์ด์ง๊ฐํ ์ฌ๋๋ค์ ๋ง๋ ๋ถ์ด์ง ๋ชปํ๋ ๋ด๊ฒ ๊ทธ๋ฐ ์ง๋ฌธ์ ํ๋ค๋, DEA-C02์ํ์ ์ํ์ฌ ๋ ธ๋ ฅํ๊ณ ๊ณ์ญ๋๊น, Snowflake DEA-C02 ์ํ์ ๋ด์ผ ํ๋ ๋ถ์ด๋ผ๋ฉดDumpTOP๋ฅผ ํ๋ฒ ๋ฏฟ์ด๋ณด์ธ์.
์ํํจ์ค ๊ฐ๋ฅํ DEA-C02์ธ์ฆ๋คํ๊ณต๋ถ ์ต์ ๋ฒ์ ๋คํ๋ฐ๋ชจ ๋ฌธ์ ๋ค์ด
DEA-C02 ์์๋๋น์๋ฃ๋ฅผ ๊ตฌ๋งคํ์๋ฉด 1๋ ๊ฐ ์ ๋ฐ์ดํธ๋ ๋๋ง๋ค ์ต์ ๋ฒ์ ์ ๊ตฌ๋งค์ ์ฌ์ฉํ ๋ฉ์ผ๋ก ์ ์กํด๋๋ฆฝ๋๋ค, DEA-C02 ์ํ Braindump๋ฅผ ์ฌ์ฉํ์ฌ, ๋ค๋ฅธ ์ด๋ ํ ๊ฒ๋, ๋น์ผ ๊ต์ก๋ ๋ฐ์ ํ์๊ฐ ์์ต๋๋ค, Snowflake DEA-C02 ๋คํ๋ Snowflake DEA-C02 ์ํ์ ๋ชจ๋ ๋ฌธ์ ๋ฅผ ์ปค๋ฒํ๊ณ ์์ด ์ํ์ ์ค์จ์ด ์์ฃผ ๋์ต๋๋ค.
- DEA-C02์ต์ ์ ๋ฐ์ดํธ๋ฒ์ ์ธ์ฆ์ํ์๋ฃ ๐ป DEA-C02์ํํจ์ค ๊ฐ๋ฅํ ์ธ์ฆ๊ณต๋ถ ๐ DEA-C02์ต๊ณ ํ์ง ์ํ๋คํ ๊ณต๋ถ์๋ฃ ๐ค โ www.itdumpskr.com ๏ธโ๏ธ์์[ DEA-C02 ]๋ฅผ ๊ฒ์ํ๊ณ ๋ฌด๋ฃ๋ก ๋ค์ด๋ก๋ํ์ธ์DEA-C02์ํํจ์ค ๊ฐ๋ฅํ ์ธ์ฆ๊ณต๋ถ
- DEA-C02์ํ์ ๋ณด ๐ DEA-C02ํฉ๊ฒฉ๋ณด์ฅ ๊ฐ๋ฅ ๋คํ๊ณต๋ถ ๐คฑ DEA-C02ํผํํธ ๋คํ ์ต์ ์ํ ๐ค [ www.itdumpskr.com ]์(๋ฅผ) ์ด๊ณ โฉ DEA-C02 โช๋ฅผ ์ ๋ ฅํ๊ณ ๋ฌด๋ฃ ๋ค์ด๋ก๋๋ฅผ ๋ฐ์ผ์ญ์์คDEA-C02์ํํจ์ค ๊ฐ๋ฅํ ์ธ์ฆ๊ณต๋ถ
- DEA-C02ํผํํธ ๋คํ ์ต์ ์ํ ๐ถ DEA-C02์ต์ ์ ๋ฐ์ดํธ๋ฒ์ ์ธ์ฆ์ํ์๋ฃ ๐ง DEA-C02ํผํํธ ์ธ์ฆ๊ณต๋ถ์๋ฃ ๐คข ๋ฌด๋ฃ๋ก ์ฝ๊ฒ ๋ค์ด๋ก๋ํ๋ ค๋ฉดโ kr.fast2test.com ๏ธโ๏ธ์์โท DEA-C02 โ๋ฅผ ๊ฒ์ํ์ธ์DEA-C02 100๏ผ ์ํํจ์ค ๋คํ์๋ฃ
- DEA-C02์ต์ ์ ๋ฐ์ดํธ ์ธ์ฆ๋คํ ๐ฏ DEA-C02์ต์ ์ ๋ฐ์ดํธ ์ธ์ฆ๋คํ ๐ DEA-C02ํผํํธ ์ธ์ฆ๊ณต๋ถ์๋ฃ ๐ ์คํ ์น ์ฌ์ดํธโ www.itdumpskr.com ๏ธโ๏ธ๊ฒ์โฅ DEA-C02 ๐ก๋ฌด๋ฃ ๋ค์ด๋ก๋DEA-C02์ํํจ์ค ๋คํ๊ณต๋ถ์๋ฃ
- ์ต์ ๋ฒ์ DEA-C02์ธ์ฆ๋คํ๊ณต๋ถ ์๋ฒฝํ ๋คํ๋ฐ๋ชจ๋ฌธ์ ๐งช ๋ฌด๋ฃ๋ก ๋ค์ด๋ก๋ํ๋ ค๋ฉดโฉ www.itcertkr.com โช๋ก ์ด๋ํ์ฌโ DEA-C02 โ๋ฅผ ๊ฒ์ํ์ญ์์คDEA-C02์ต์ ๋คํ๋ฌธ์
- ์ต์ DEA-C02์ธ์ฆ๋คํ๊ณต๋ถ ์ธ์ฆ์ํ๋๋น ๋คํ๊ณต๋ถ ๐ค ๋ฌด๋ฃ๋ก ์ฝ๊ฒ ๋ค์ด๋ก๋ํ๋ ค๋ฉดโ www.itdumpskr.com ๏ธโ๏ธ์์โท DEA-C02 โ๋ฅผ ๊ฒ์ํ์ธ์DEA-C02์ํ์ ๋ณด
- DEA-C02์ธ์ฆ๋คํ๊ณต๋ถ ์ต์ ์ธ๊ธฐ๋คํ์๋ฃ ๐ ๊ฒ์๋ง ํ๋ฉดโ www.koreadumps.com ๏ธโ๏ธ์์โ DEA-C02 ๏ธโ๏ธ๋ฌด๋ฃ ๋ค์ด๋ก๋DEA-C02ํฉ๊ฒฉ๋ณด์ฅ ๊ฐ๋ฅ ๋คํ๊ณต๋ถ
- ์ต์ ๋ฒ์ DEA-C02์ธ์ฆ๋คํ๊ณต๋ถ ์๋ฒฝํ ๋คํ๋ฐ๋ชจ๋ฌธ์ ๐น โ www.itdumpskr.com โ์(๋ฅผ) ์ด๊ณ โ DEA-C02 โ๋ฅผ ๊ฒ์ํ์ฌ ์ํ ์๋ฃ๋ฅผ ๋ฌด๋ฃ๋ก ๋ค์ด๋ก๋ํ์ญ์์คDEA-C02์ต์ ์ ๋ฐ์ดํธ ์ธ์ฆ๋คํ
- ์ต์ DEA-C02์ธ์ฆ๋คํ๊ณต๋ถ ์ธ์ฆ์ํ๋๋น ๋คํ๊ณต๋ถ ๐ ๏ผ kr.fast2test.com ๏ผ์น์ฌ์ดํธ์์โ DEA-C02 ๐ ฐ๋ฅผ ์ด๊ณ ๊ฒ์ํ์ฌ ๋ฌด๋ฃ ๋ค์ด๋ก๋DEA-C02์ต๊ณ ํ์ง ์ํ๋คํ ๊ณต๋ถ์๋ฃ
- DEA-C02์ต์ ๋คํ๋ฌธ์ ๐ญ DEA-C02์ต์ ๋คํ๋ฌธ์ ๐งจ DEA-C02์ํ๋คํ์๋ฃ ๐ฑ ใ www.itdumpskr.com ใ์โ DEA-C02 ๐ ฐ๋ฌด๋ฃ ๋ค์ด๋ก๋๋ฅผ ๋ฐ์ ์ ์๋ ์ต๊ณ ์ ์ฌ์ดํธ์ ๋๋คDEA-C02์ต๊ณ ํ์ง ์ํ๋๋น์๋ฃ
- ์ต์ ๋ฒ์ DEA-C02์ธ์ฆ๋คํ๊ณต๋ถ ๋คํ๋ SnowPro Advanced: Data Engineer (DEA-C02) ์ํ์ ๋จ๋ฒ์ ํจ์คํ๋ ํ์์๋ฃ ๐ข โค www.dumptop.com โฎ์ ๋ฌด๋ฃ ๋ค์ด๋ก๋โ DEA-C02 โํ์ด์ง๊ฐ ์ง๊ธ ์ด๋ฆฝ๋๋คDEA-C02์ํ์ ๋ณด
- luthfarrahman.com, daotao.wisebusiness.edu.vn, class.educatedindia786.com, train.yaelcenter.com, protech.ecend.us, academy.sodri.org, tmortoza.com, aynwlqalam.com, learn.kausarwealth.com, pacificoutsourcinginstitute.com
0
Course Enrolled
0
Course Completed